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Abstract

Neuromodulation therapies offer a unique opportunity for translating brain-computer interface (BCI) tech-
nologies into a clinical setting. Several diseases such as Parkinson’s disease are effectively treated by inva-
sive device stimulation therapies, and the addition of sensing and algorithm technology is an obvious
evolutionary expansion of capabilities. In addition, this infrastructure might enable a roadmap of novel
BCI technologies.While the initial applications are focused on epilepsy andmovement disorders, the tech-
nology is potentially transferable to a broader base of disorders, including stroke and rehabilitation. The
ultimate potential of BCI technology will be determined by forthcoming chronic evaluation in multiple
neurologic disorders.

INTRODUCTION

The ultimate goal of a bioelectronic therapy is to restore
more normative function in patients with disease by
using an adjunctive electronic circuit that seamlessly
integrates into the compromised physiologic system.
From a bioengineering point-of-view, many biologic
systems are comprised of a “dynamic control loop”
(Feldman and Del Negro, 2006; Fowler et al., 2008).
These loops serve to provide adaptive feedback to keep
a physiologic activity at a target set point determined by a
higher-level system. These control loops exist across
many spatial and temporal scales, from the molecular
to the organ system and from milliseconds to months.
A bioelectronic system dynamically interacts with the
physiologic system to functionally restore, reinstate, or
repair a control loop compromised by a disease state
(Birmingham et al., 2014). To be successful, a bioelectro-
nic system must integrate with the physiology at the
appropriate scales of space and time. This chapter will
discuss how brain-computer interfaces (BCIs) might

help to implement more advanced bioelectronic systems
in the future as well as the opportunities and challenges
that should be considered for industrial translation.

Please note that at the time of this writing, all applica-
tions of BCI described in this chapter are still limited by
law to investigational use cases only.

COMMERCIAL PERSPECTIVES ON
BRAIN-COMPUTER INTERFACES

New technologies often face hurdles in their commer-
cialization journey. Economists often capture this as part
of the “technology adoption lifecycle (TALC)” (Rogers,
2003). As illustrated in Fig. 25.1, the TALC is often
represented as a diffusion of innovation that proceeds
from innovators and early adopters into the population
majority. Refinements to this model are proposed when
the new technology is disruptive, meaning a technology
that requires an entirely new way of performing a task
(Moore and McKenna, 2006). Technologies that are
disruptive often face major hurdles when trying to make
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the leap across the “chasm” between early adopters, often
found in advanced academic communities, and the
general population. While innovators and early adopters
might feel content to explore the capabilities of a technol-
ogy for its own sake, the pragmatic view of the early
majority requires a different value proposition. This large
group of practitioners needs stronger assurance of
economic and therapy success.

From an industry perspective, wemust think carefully
about how we introduce brain–machine interfacing tech-
nology. For example, neural prosthetic control would
likely require new implant interfaces and procedures that
are more invasive than commercialized brain modulation
systems. While some progress has been made on neural
prostheses (e.g., the revolutionary prosthesis project
from DARPA, Collinger et al., 2013; Downey et al.,
2016; BrainGate, Hochberg et al., 2006; Ajiboye et al.,
2017), more than a decade and many millions of dollars
later, there is still no viable fully implantable system that
is approved by regulators for commercial marketing or
by reimbursement agencies for commercial viability.
The chasm between early adopters and the general pop-
ulation for this application will probably prove to be
quite large. An alternative is to look for applications
where invasive brain interfacing already exists, including
the robust environment of manufacturers and regulators.
Brain modulation systems, shown in Fig. 25.2, might
provide such a pathway.

Modulating neural activity through stimulation is an
effective treatment for several neurologic diseases, such
as Parkinson’s disease and essential tremor, and is being
explored for several new indications. Opportunities for

improving neuromodulation include reducing the burden
of optimizing stimulation parameters, objectively measur-
ing efficacy over time, and continuously adjusting therapy
to optimize patient outcomes. Achieving these goals is
challenged by practical issues, including the paucity of
human data related to disease states, poorly validated
patient state estimators, and evolving nonlinear mappings
between estimated patient state and optimal stimulation
parameters (Ryu and Shenoy, 2009). The application of
brain–machine interface (BMI) technology to existing
stimulator architectures could help address these issues
and potentially enable smarter “prosthesis” systems in
the future for neural circuits impacted by disease.

When well designed, these building blocks can be
integrated as a whole to restore a physiologic function
or create new synthetic “reflexes” for therapeutic benefit.
Before detailing specific examples of these potential use
cases, we briefly highlight other additional practical con-
siderations in designing a translational BCI that works
within a medical device system. These factors include
both the clinical evidence and regulatory environment,
which motivate considerations of risk management,
maintenance of quality management processes, and a
consideration of the therapy value vs cost, as well as tech-
nical considerations such as power management, infor-
mation management like data privacy, and interface
management like materials biocompatibility and
biostability.

Considering the systems perspective, successful
bioelectronic devices incorporating a BCI will demon-
strate a favorable balance across at least six factors
(Fig. 25.3):
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1. Clinical necessity: This is a clinical problem that is
currently inadequately met by existing therapies and
affects a significant number of patients to justify
application of the technology. For instance, the
need to reduce tremor in a Parkinson’s disease or

drug-refractory essential tremor patient is a key moti-
vation for deep brain stimulation (DBS) therapy.

2. Scientific validity: This is the theory of operation or
mechanism of action of the therapy that relates to the
disease state pathophysiology. It is captured in the

Fig. 25.2. An example of a fully implanted brain–interface system for treating neurologic disorders. The required systems for deep

brain stimulation are already in place: from physical device systems to implant planning support, to regulatory adoption (for stim-

ulation in movement disorders), to reimbursement. More than a hundred thousand systems have been deployed to date. The use of

sensing signals to optimize therapy is arguably a natural extension of the technology and clinical practice, as opposed to a disruptive

innovation.

Economic viability

Workflow viability

Deployment cost Technologic maturity

Successful
bioelectronic

system

Clinical necessity

Scientific validity

Fig. 25.3. Practical translation constraints for a successful bioelectronic system.

INDUSTRIAL PERSPECTIVES ON BRAIN-COMPUTER INTERFACE TECHNOLOGY 343



transfer function and can be used to identify patient
subgroups that would most benefit from the technol-
ogy. Tools such as microelectrode recordings and
functional imaging are often used to elucidate mech-
anisms of action in neurologic disorders (Hart
et al., 2015).

3. Technologic maturity: This is the development of
robust designs, including scientific instrumentation,
which can safely and reliably interact with the body.

4. Deployment cost: This is the cost to bring a medical
technology to the marketplace, including the ability
to secure intellectual property, satisfy regulatory
constraints, and distribute to physicians and patients.

5. Workflow viability: This is the ability for the technol-
ogy to satisfy relevant clinical and patient stake-
holders without prohibitive adjustments or burden.

6. Economic viability: This is a clear value proposition
for the technology that demonstrates economic
value to the healthcare continuum. This can be
accomplished in a number of ways, including:
reducing the price of technology, expanding access
to care, improving therapy efficacy, and reducing
time to receive care.

A common method for optimizing these factors is
the “biodesign” approach (Zenios et al., 2009). This
approach is useful to identify impactful medical technol-
ogy opportunities and invent solutions that efficiently
address unmet needs.

BCI TAXONOMY AND REPRESENTATIVE
USE CASES

A framework (Fig. 25.4) based upon use cases and risk
profile could be useful in facilitating communication
between investigators, manufacturers, and medical
device regulators to allow for setting initial expectations
of data needed to support device safety and effectiveness.
A four-class taxonomy is presented in what follows,
illustrating a range of applications from classical BCIs
to restorative neural “coprocessors” that are an evolution
of current DBS therapies.

IMPLANTED TECHNOLOGY LANDSCAPE

The Medtronic Activa PC+S® is an investigational bidi-
rectional neural interface system that illustrates many
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of these the core bioelectronic design principles in
action. The Activa PC+S® system was developed for
gathering basic neuroscience information to better under-
stand future neuromodulation-based therapy opportuni-
ties. The Activa PC+S® is CE-marked for epilepsy,
Parkinson’s disease, essential tremor, and dystonia, and
was designed with the strategies outlined for bioelectro-
nic research tools (note: it is not approved for commercial
use in the United States). A block diagram of the system
architecture is shown in Fig. 25.5. The system archi-
tecture leverages an existing, approved neurostimulator
system, the Activa PC® as the foundation for the bioelec-
tronic system; all predicated therapy capabilities for DBS
are preserved in the research tool. The research capability
is enabled by a scientific payload that is embedded as a
peripheral inside the device. The design is modular at
multiple scales; e.g., the science payload is activated as
an independent entity by the researcher to mitigate the
risk of compromising the predicate therapy while gather-
ing data. Information flow is also modular: critical
sensing interfaces such as amplification of local field
potentials (LFPs) and inertial sensing and stimulation
delivery, including novel pulse trains, are allocated to

the implant. Simple biomarker calculations such as
spectral analysis (i.e., digital signal processing-based
Fourier transforms) and control policies can be embed-
ded within the implant (Stanslaski et al., 2012), while
for more complex signal analysis, such as phase-
amplitude coupling (de Hemptinne et al., 2015) and
fusion of external signals for control policies, the use
of the bidirectional telemetry is employed to leverage
the distributed architecture and offload processing to
an external system. The flexible firmware platform
allows for configuration of the device for different
use cases.

The design of the external system, employing a
computer-in-the-loop, includes additional features for
facilitating algorithm research. For example, all data
can be streamed to an external data collection portal
rather than stored on the device and requiring subsequent
upload. The external interfacing to the device also uses
an application programming interface (API), which
enables users to rapidly prototype new classifiers and
control policy algorithms. Rapid prototyping is enabled
by providing theAPI abstraction layer that allows simpli-
fied interfacing to the system with applications such as
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Fig. 25.5. (A) The design of a typical neuromodulation system, including the patient activator (right). (B) Leveraging typical

neuromodulation components to implement a computer-in-the-loop closed-loop prototyping system. (C) Embedded scientific

instrumentation (e.g., bioelectric sensing, accelerometer) and upgradable firmware allow typical systems to act as a vehicle for

both delivering therapy and investigational research.
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Matlab® and LabVIEW™. Leveraging an external com-
puting platform also allows the system to link to secure
web portals for annotation, data sharing, and analysis.
Once an acceptable algorithm is found, the firmware
can be upgraded noninvasively through a wireless link
to enable new features such as investigational closed-
loop algorithms that enable de novo reflex arcs.

The investigational examples cited in each class of the
BCI framework illustrate how the Activa PC+S® bioe-
lectronic system is being used to support a variety of
BCI applications using commercially viable building
blocks.

CLASS A

Class A includes BCI applications that record signals
from the brain to interface with an external system
due to motor impairment from neurologic disease or
injury (e.g., spinal cord injury, amyotrophic lateral
sclerosis (ALS), brainstem stroke). These external sys-
tems include but are not limited to communication
software, environmental controls, wheelchairs, and
prosthetic limbs. This category excludes applications
in which brain recordings directly influence operation
of an implanted neural stimulator (INS), and can be
thought of as a classical BCI. The benefit of Class
A applications in this patient population is to provide
a robust, chronically stable, cosmetically acceptable
mechanism to tap into intact neural structures for func-
tional restoration. An investigational example of a
fully implanted communication interface for a patient
with locked-in syndrome (LIS) is described in the
following section.

Cortical recording for communication in
locked-in syndrome

LIS is characterized by an inability to exert voluntary
control over muscles in the presence of intact cognition,
resulting in quadriplegia and aphonia. Despite their
physical impairment, people with LIS often report a high
quality of life (Rousseau et al., 2015), but this parameter
is strongly affected by the ability to communicate ade-
quately. When that is not possible, e.g., in late-stage
ALS, vertical eye movements or blinks only allow for
caregiver-initiated yes/no communication or selection
of letters one at a time (i.e., alphabet board), leaving lim-
ited or no options for self-initiated and private communi-
cation. Recent years have seen a surge in research on
decoding neuronal signals from brain implants, with
quite impressive achievements, where paralyzed people
succeeded in moving a robotic or paralyzed arm using
their brain signals. To date, however, such systems have
been far away from being fully functional for autono-
mous use in real life, which is a key consideration for
translation (Huggins et al., 2011).

Recently, the first fully implantable BCI communica-
tion system for home use (Vansteensel et al., 2016) was
demonstrated. Subdural electrode strips were implanted
through burr holes on target areas in the left dorsolateral
prefrontal cortex and left sensorimotor area and con-
nected to the Activa PC+S®. The participant controlled
the BCI by attempting to move the fingers of the right
hand. The signals recorded over the hand region of the
sensorimotor area showed a strong increase in high fre-
quency band (65–95Hz) power and a strong task-related
decrease in low frequency band power during attempted
hand movement (Fig. 25.6A). Performance on the

Fig. 25.6. (A) Spectral power distribution of attempted movement (red) and rest (black) of sensorimotor cortical brain signals.

(B) Two target task performance development over>6 months after implantation. Every black dot represents a single, 300-s run.
Multiple runs on the same day are indicated by connecting black lines between the dots. Black dashed lines connect runs on
different days. Mean and SD of performance are indicated by a horizontal gray line and gray shading, respectively. Adapted from
Vansteensel, M.J., Pels, E.G.M., Bleichner,M.G., et al., 2016. Fully implanted brain-computer interface in a locked-in patient with

ALS. N Engl J Med 375, 2060–2066. doi: 10.1056/NEJMoa1608085.
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standard BCI two-target task was high (>90% correct)
and was stable for more than 6 months (Fig. 25.6B).
Every black dot represents a single, 300s, run. Multiple
runs on the same day are indicated by connecting black
lines between the dots. Black dashed lines connect runs
on different days. Mean and SD of performance are
indicated by a horizontal gray line and gray shading,
respectively. After optimization of parameters, perfor-
mance on training games and spelling was stable at high
levels: 74% in a continuous feedback task, 87% in a
discrete “clicking” task, and an information transfer rate
of 13�3 bit/min during spelling. The participant is cur-
rently using the system at home without the help of the
research team or other experts. This case study provides
direct evidence supporting the utility of an implantable
system that clinicians can configure to tap into neural
circuits for control of an external actuator or system.

CLASS B

Class B is defined to include component applications that
provide quantitative information (i.e., neural or inertial
data collected from the INS) to the clinician for assis-
tance in optimizing therapy. This category requires man-
ual intervention by the clinician to change the operation
of the neural stimulator; applications where the brain
signals themselves directly influence the operation of
the INS are excluded. The benefits of these Class
B use cases are to improve the information available to
a clinician to optimize therapy while minimizing their
burden. Though not an automated closed-loop system,

it improves the manual feedback loop involving the
clinician. An investigational example of providing
guidance on optimal therapeutic stimulation settings by
applying the measured physiologic signals through a
machine learning prediction algorithm is described in
the following section.

DBS electrode selection in Parkinson’s
disease

Currently, selection of effective stimulation parameters
for DBS therapy can be time consuming for both the
physician and the patient, as the programming process
relies upon iterative observation of behavioral responses.
It is possible that leveraging neurophysiologic symptoms
correlated to clinical symptoms may provide a method to
guide effective DBS programming. In the example illus-
trated in Fig. 25.7, data from a new patient is recorded
and compared to a database to determine optimal DBS
settings based on historical outcomes of patients with
similar neural features.

In a pilot study, LFP recordings were obtained from
15 patients with Parkinson’s disease with DBS leads in
the subthalamic nucleus using the Activa PC+S® system
(Connolly et al., 2015). These recordings were then used
for a preliminary investigation into whether charac-
teristics of the recordings correlate with the contacts
selected by the attending physician for the patient’s
DBS therapy. During device implantation and follow-
up sessions extending out to 6 months, recordings were
saved from the DBS leads with the patient at rest in the

Fig. 25.7. Example clinical decision support tool that leverages brain sensing.Data from a newpatient is recorded and compared to

a database to determine optimal DBS settings based on historical outcomes of patients with similar neural features.
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off-medication and off-stimulation state. LFP recordings
were taken from each of the six possible pairwise com-
binations of the four electrode contacts, and at the end
of each clinical visit, the neurologist programmed the
patient’s DBS therapy, choosing, from among other
parameters, the stimulation contact(s) (C0, C1, C2, C3,
or some combination thereof ) to provide stimulation.
A total of 83 distinct recordings were made. Spectral fea-
tures (i.e., power in several frequency bands) were
extracted from the LFP recordings offline, and a number
of machine learning algorithms (e.g., linear discriminant
analysis, k-nearest neighbors, classification trees, and
support vector machines) were trained to predict which
contact the clinician selected based upon some com-
bination of the spectral features. The support vector
machine method yielded a low misclassification rate
(7/83) using aminimal set of spectral features (i.e., power
in 3–5 Hz y-band, and 10–20Hz b-band) (Fig. 25.8). In
Fig. 25.8, each dot represents the clinician-selected
contact for each observation. The black x’s showmisclas-
sified observations and the vertical location shows the
predicted contact/group.

While there is certainly a need for larger scale valida-
tion, these results suggest that it may be possible to
develop an algorithm that uses LFP recordings from
DBS leads to guide the identification of the contact near-
est the physiologic sweet spot for effective DBS in the
STN and greatly improve efficiency and simplify DBS
programming. As newer DBS systems with larger num-
bers of stimulation contacts emerge, the practical time
savings afforded by automatic programming may prove
to be a critical component of clinical adoption and
optimizing patient outcomes.

CLASS C

Class C includes BCI applications that analyze signals
recorded from neural circuits to detect behavioral events
and trigger stimulation based upon the detection of these
events. The behavioral events of interest include but are
not limited to sleep/awake cycles, body posture, initia-
tion and termination of voluntary movement, and gait.
The key characteristic of Class C configurations is the
use of algorithms that detect these events based upon
neural data and control policies that deliver stimulation

based upon the detected events. That is, the brain signals
are used as a proxy for behavior and directly influence the
operation of the INS. In principle, this can be considered
an automated adjustment of the patient programmer
since signals are triggered by signals denoting intention,
but bypassing the need for overt manual intervention.
The benefit of a Class C application is the ability of
the stimulator to respond more quickly and specifically
to patient needs, while greatly minimizing their burden.
An investigational example of this class of closed-loop
strategies applied to adaptive control of DBS for treat-
ment of essential tremor is presented in the following
section.

Cortical recording for closed-loop control
of DBS in essential tremor

Current DBS for ET uses implanted leads in the ventral
intermediate nucleus of the thalamus to deliver constant
high frequency stimulation to mitigate tremor. Given that
these patients only experience tremor during volitional
movement, a feasible goal for a closed-loop system
would be to limit stimulation to periods of intentional
movement. This could result in a system that preserves
power, reduces the frequency of replacement surgeries,
and reduces side effects by only delivering stimulation
on an as-needed basis. A simplified form of a closed-loop
system is shown in Fig. 25.9, where sensors are collect-
ing information (i.e., brain signals) from the patient,
classifiers identify the patient state (i.e., detect when
the patient is moving), and a control policy dictates the
action that the actuator takes in each state (i.e., stimula-
tion turns on when the patient is voluntarily moving and
turns off at rest). In this example, when the patient is
at rest, the stimulator is off (Fig. 25.9A). When motor
planning is initiated, brain rhythms (e.g., b) change
(Fig. 25.9B). Detection of changes in these neural signa-
tures then triggers stimulation during intentional motion
(Fig. 25.9C). Finally, when the patient returns to rest,
brain rhythms return to baseline and stimulation ceases
(Fig. 25.9D).

Several approaches can be adapted for detection of
patient movement as a trigger for stimulation. Wrist-
worn inertial sensors and limb electromyography have
already been used to trigger stimulation changes in
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Fig. 25.8. Automated stimulation contact selection based on brain sensing (Connolly et al., 2015).
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DBS patients (Herron et al., 2017). However, these sen-
sors are worn externally and may be uncomfortable or
undesirably attract attention to a patient. Additionally,
they would need to communicate wirelessly with the
INS to trigger stimulation changes, which would con-
sume additional power. An alternative to using limb-
based sensors would be to make use of known neural
phenomena that can be used to indicate when a patient
is performing volitional movements. As described in
the Class A example of using a BCI for communication,
desynchronization (i.e., decrease in power) is observed in
the b-band during movement when electrodes are placed
over the primary motor cortex. In the context of essential
tremor, this enables a simple, robust threshold scheme to
distinguish periods of volitional motion from periods of
rest. The output of this classifier could then toggle
between states of a controller that delivers full clinical
stimulation (i.e., the amplitude used for open-loop tremor
suppression) during movement and no stimulation
during rest.

An initial proof-of-concept of this control paradigm
was recently completed (Fig. 25.10) by leveraging the
Activa PC+S® system with an external computer-in-
the-loop via the Nexus-D system (Herron et al., 2017).
Stimulation was ramped up when power in the b-band
decreased below a lower threshold and ramped down
when power in the b-band increased above an upper
threshold. These thresholds were empirically determined
during the experimental session. On the left are two
spirals drawn with the dominant hand before and after

DBS implant. On the right are spirals collected on the
day of the experiment in each of the three stimulation
states. Differences in tremor between no stimulation at
4 months post-op and experimental day are attributed
to day to day tremor variation. Note tremor in the upper
right and lower left quadrants of the spiral in the exper-
imental no stimulation case. Comparatively there are few
deviations from normal spirals in the open-loop and
closed-loop cases.

CLASS D

In contrast to Class C, where neural signals are used as
an indirect measure of behavioral events that trigger
stimulation, Class D component arrangements leverage
a closed-loop approach that is more similar to the

Fig. 25.9. Adaptive stimulation reflex schemes for essential tremor. (A)When the patient is at rest, the stimulator is off. (B) Brain

rhythms (e.g., b, g) change whenmotor planning is initiated. (C) Detection of changes in neural signal features triggers stimulation

during intentional motion. (D) When the patient returns to rest, brain rhythms return to baseline and stimulation ceases. Note that

the leads for sensing (blue) and stimulation (green) are drawn separately for illustrative purposes.

Fig. 25.10. Patient drawn spirals collected as part of clinical

tremor assessment (Herron et al., 2017).
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traditional engineering principle of feedback control.
That is, Class D includes applications in which neural
signals are part of a feedback loop that delivers stimula-
tion to regulate the signals themselves (Fig. 25.11). In
these arrangements, the neural signals are an indirect
measure of the underlying pathologic state. In the
example shown in Fig. 25.11, implanted hardware senses
brain rhythms (recording electrode shown in orange, top
left). A disturbance in these rhythms, corresponding to a
change in patient state, is then detected (top right). This
disturbance triggers delivery of stimulation (stimulating
electrode shown in blue, bottom left). Finally, when
sensed brain rhythms return to normative state, stimula-
tion is terminated (bottom right).

An analogy of this type of system from daily life is a
thermostat that controls room temperature. Thermostats
measure temperature and use an actuator (i.e., furnace,
boiler, or air conditioner) to drive the temperature toward
a defined set point. In this way, Class D controllers may
be thought of as thermostats that use an actuator (i.e.,
implanted stimulator) to regulate certain brain rhythms
to maintain them within a homeostatic window. Once
again, this can be considered an automated adjustment
of the patient programmer, but now input signals are
based on physiologic signals correlated with disease
state. Similar to Class C, automated titration of signals
in Class D again bypasses the need for overt manual
intervention. The benefit of a Class D application is
the ability to respond more quickly and specifically to
a patient’s needs, including signals of which they might
not be consciously aware, while greatly minimizing
their burden. It is important to consider, however, the
relative amplitude of these signals and the proximity to

therapeutic electrodes, as less favorable signal to noise
characteristics due to stimulation artifact can impact per-
formance (Stanslaski et al., 2012; Swann et al., 2018). An
investigational example of this sort of closed-loop strat-
egy is described in the following section.

Cortical recording for closed-loop control
of DBS in Parkinson’s disease

Recently, the Activa PC+S® system was used to obtain
multisite long-term recordings on two patients with
Parkinson’s disease who experienced frequent dyskine-
sia (Swann et al., 2016). The patients were studied both
at rest and during voluntary movement. It was demon-
strated that dyskinesia is associated with a narrowband
g oscillation in the motor cortex between 60 and
90Hz, a similar, though weaker, oscillation in the subtha-
lamic nucleus, and strong phase coherence between the
two (Fig. 25.12). The finding of a brain rhythm reliably
associated with dyskinesia has translational potential as a
control signal in closed-loop DBS (Fig. 25.12, middle)
that has been evaluated during short-term in-clinic
testing (Swann et al., 2018).

REFLECTIONS AND FUTURE
DIRECTIONS

The treatment of neural disease continues to be an area of
intense research and opportunity. While progress has
been made in better understanding these diseases, we
believe the underlying pathophysiology and quantifiable
disease metrics continue to be elusive, most notably
due to lack of chronic human data in representative
use conditions. While BCI technology offers an avenue

Fig. 25.11. Concept diagram illustrating a restorative brain coprocessor for DBS therapy.
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to generate data and investigate these diseases from an
engineering perspective, it is challenged by having to sat-
isfy multiple other factors in order to be viable.

Besides the scientific challenges of biomarker identi-
fication and the need for advancement in our understand-
ing of physiologic systems, remaining engineering
challenges in translational BCI include longevity of
devices, security of data and communications, and the
standardization of connectivity and infrastructure. The
longevity of devices depends largely on thematerials that
interface with the tissue and the energy storage technol-
ogy. The challenges at the tissue interface include reac-
tion of the tissue to the materials and breakdown of the
device materials resulting in a degradation of the device’s
structure and intrusion of fluids into circuitry. Limitation
on longevity due to energy storage either relate to the
finite charge capacity of primary cells of a given battery
chemistry and size or the number of recharge cycles
that rechargeable designs can under go before charge
capacity drops or catastrophic failure occurs. The emer-
gence of smart, connected devices is already having a
transformational impact on competition in a variety of
markets, requiring companies to build and support an
entirely new technology infrastructure (Porter and
Heppelmann, 2014, 2015). This technological boom
has led to growing security concerns, highlighted in
the media through cases such as car hacking in the auto
industry and retail credit card hacks. Bioelectronic
devices might not only carry sensitive personal data; if
their function is compromised, health and safety are at
risk. Thus, communication security is a logical first step
toward securing device access and data contents.
On-device data encryption is another area to be explored,
in the event that devices are stolen or covertly accessed.
Finally, while many emerging BCI devices are exploring
low energy communication protocols, such as Bluetooth
Low Energy, many other proprietary communication
protocols exist today, and further standardization of

communication will foster growth and innovation of
applications that promote health and lifestyle
improvements.

The application of BCI as a discovery tool can be
achieved by adding scientific instrumentation to proven
therapy platforms, thereby enabling research tools for
streamlined and ethical investigation of neural systems.
As with other major innovations of societal importance,
overcoming these challenges demands the collaboration
of government, academia, industry, and willing and
informed volunteers, to realize the common goals of
better understanding disease and improving the lives of
patients.
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